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It has been shown that a single standard linear integrate-and-fire �IF� neuron under a general time-dependent
stimulus cannot possess chaotic dynamics despite the firing-reset discontinuity. Here we address the issue of
whether conductance-based, pulsed-coupled network interactions can induce chaos in an IF neuronal ensemble.
Using numerical methods, we demonstrate that all-to-all, homogeneously pulse-coupled IF neuronal networks
can indeed give rise to chaotic dynamics under an external periodic current drive. We also provide a precise
characterization of the largest Lyapunov exponent for these high dimensional nonsmooth dynamical systems.
In addition, we present a stable and accurate numerical algorithm for evaluating the largest Lyapunov expo-
nent, which can overcome difficulties encountered by traditional methods for these nonsmooth dynamical
systems with degeneracy induced by, e.g., refractoriness of neurons.
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I. INTRODUCTION

Applications of nonlinear dynamical system methods to
neuroscience have provided an important approach to ad-
dress information processing issues arising from neuronal
systems �1–4�. The Hodgkin-Huxley �HH� type of neuronal
model has achieved remarkable success in providing quanti-
tative descriptions of spiking dynamics �5�. However, the
dynamics of HH neurons under a general time varying drive
cannot be easily analyzed, therefore, it is difficult to obtain
an intuitive understanding of the underlying network mecha-
nisms governing the information processing carried out by a
large number of interconnected HH-like neurons. Further-
more, HH neurons with detailed ionic currents result in a
large computational cost to resolve the stereotypical spike
dynamics in simulation when employed to investigate neuro-
physiological phenomena involving a large number of neu-
rons. An alternative theoretical approach is to use the simple
conductance-based integrate-and-fire �IF� neuron, as an effi-
cient reduced model for cortical cells to study the statistical
spike-encoding properties of cortical networks �6,7�. IF neu-
rons have been used as basic neuronal units for modeling
large-scale cortical dynamics �8–12� because it has been es-
tablished experimentally that IF models can statistically quite
faithfully capture the response of cortical cells under in-vivo-
like currents in terms of firing dynamics and subthreshold
membrane dynamics �13–16�.

One may ask: is there a fundamental difference between
the HH and related reduced IF neuronal models which af-
fects the investigation of network dynamics? Notably chaos
can arise in the dynamics of a single HH neuron, for ex-
ample, under a periodic external drive �17,18�. However, it
has been rigorously proven that the dynamics of a standard
single IF neuron cannot be chaotic �without threshold fa-
tigue� under any general time-dependent stimulus �19,20�. In
this case, the trajectory of solution of dynamical equations is
constrained in a plane since the dimension of the system is at

most two �i.e., V and t� and the monotonicity of the solutions
with different initial conditions can be used �19�. Meanwhile,
one can show that a single IF neuron which synapses onto
itself cannot be chaotic under a constant current drive either.
Therefore, a natural question comes up: what about an IF
network, can it be chaotic? For neuronal networks, however,
the situation is much more complicated because the dimen-
sion of the system is high and the dynamics is no longer
confined to a plane. The corresponding properties of the
spike map such as the locally increasing property do not hold
any longer �19�. If a network of IF neurons could not exhibit
chaos either, its utility as a simplified computational model
for the large-scale realistic neuronal network phenomena
would be diminished since it would limit information pro-
cessing of networks to less rich, nonchaotic dynamics. Fur-
thermore, the reliability of network dynamics remains a the-
oretical challenge �21–25�. Although the reliability of a
standard single IF neuron as signified by nonchaotic dynam-
ics is consistent with the experimental observation that a real
neuron can be very reliable �13–16,22�, the possibility that a
network of reliable nonchaotic elements can exhibit unpre-
dictable dynamics would have strong implication for under-
standing general nonlinear dynamics via conductance-based
pulse-coupled interactions, i.e., a spike of one unit causes a
jump in the conductance of some other units. Moreover, It
has been rigorously shown that a population of pulse-
coupled �a spike in one oscillator causes a jump in the volt-
age of other oscillators� identical IF oscillators cannot pos-
sess chaos under any constant drive �26�.

In this paper, we address the conceptual gap of whether a
conductance-based IF ensemble can induce chaos via net-
work interactions. Since the IF network dynamics is a nons-
mooth dynamics due to pulse-coupled interactions, can one
use the largest Lyapunov exponent �LE� to characterize the
long-time stability and reliability of IF network dynamics?
Here we address theoretical issues related to both the defini-
tion and the computation of the largest LE �max. We show
that the original definition of �max for smooth dynamical sys-
tems can be extended to IF network dynamics, and we
present a numerical algorithm for evaluating �max to circum-
vent the difficulty arising from the firing-reset dynamics and*zdz@cims.nyu.edu
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refractory dynamics in the IF network. We demonstrate that
there indeed exist chaotic regimes in networks of IF neurons
as signified by �max�0. Moreover, this chaotic dynamics is
also consistent with other measures, such as power spectrum,
return maps and numerical convergence. Our method of ana-
lyzing the chaotic nature of network dynamics is quite dif-
ferent from the previous studies of chaotic transients for
phase dynamics �27,28� since we address the chaotic nature
of the full dynamics, not limited to phase dynamics. We also
point out that we address the computational issues of
Lyapunov exponents that would arise in the usual random
�stochastic� dynamical systems �29�. We hope that this can
provide insight into the information processing in both IF
and HH networks.

We now turn to discuss that our work is different from the
recent work related to phase oscillators �26–28,30–48�.
There are basically two classes of models in terms of study-
ing phase oscillators, one is the smooth model in which the
interaction between oscillators is taken to depend continu-
ously on their state variables. For example, the Kuramoto
model is one of the most popular networks in modern non-
linear science and industry �30–32�. In such smooth models,
the issue of chaos can be addressed straightforwardly since
both the theoretical definition of and numerical algorithm for
computing the largest Lyapunov exponent are well estab-
lished �33–41�. The other class is the nonsmooth model in
which the interaction depends discontinuously on the state
variables of the interacting oscillators. For example, the
Mirollo-Strogatz model is widely used to study the synchro-
nized firing activity of neurons �26–28,42–48�. Such models
are in fact special cases of the model we discussed in which
there is a relatively realistic conductance dynamics for neu-
ronal interactions. We also consider a time-dependent input.
In particular, if we only consider the constant input current
and also let the decay time scale of the excitatory conduc-
tance go to zero �infinitely fast conductance�, then our model
reduces to the Mirollo-Strogatz model since the voltage
curve during each firing interval in such cases is stereotypic
and one can use phase reduction methods to consider the
dynamics of phase variables instead of voltage. However, if
the external drive is a periodic current as in our model, the
voltage curve in each firing interval is no longer stereotypic,
thus the phase reduction method is no longer applicable.
Moreover, the full dynamics �both voltage and conductance�
can be very different from the dynamics of phases alone. For
example, it has been shown that there is no chaos for the
dynamical system which consists of a population of pulse-
coupled identical integrate-and-fire oscillators under any
constant drive �26�. Transient chaos may exist in its phase
dynamics and the system will eventually evolve to a state in
which all the oscillators are firing synchronously �27,28�.
The system of pulse-coupled oscillators with infinitely fast
excitatory interactions has been studied both theoretically
and numerically, in particular, for the synchronization phe-
nomena �26–28,42–48�. For the system of pulse-coupled os-
cillators with finite decay time scale of excitatory interaction,
however, the question of whether the system can be chaotic
or not has not been addressed. Theoretically, it would be
difficult to construct a similar firing map as in the case of
infinitely fast excitatory interaction to investigate the long-

time behavior of the system �26�. Numerically, one cannot
directly use the existing algorithm �49� to compute precisely
the largest Lyapunov exponent due to the firing-reset discon-
tinuity and refractory-induced degeneracy in the dynamics,
which we will address in this paper. For the conductance-
based IF neuronal networks, it has been shown recently that
the system cannot exhibit chaotic dynamics with infinitely
fast conductance and spike train input �50�. This model is
also different from our model in that it does not take account
of conductance dynamics and its external input is given as
spike trains.

This paper is organized as follows. In Sec. II, we intro-
duce a network of fully connected oscillators modeled as
integrate-and-fire neurons. In Sec. III, we first discuss the
theoretical issue of the largest Lyapunov exponent related to
such nonsmooth dynamical systems, then, we present a nu-
merical algorithm to calculate the largest Lyapunov expo-
nents of our models and compare the performance of our
algorithm with other existing ones. In Sec. IV, we present the
numerical simulations of our models and point out that chaos
can arise from a pulse-coupled network with realistic con-
ductance dynamics. Section V contains some discussions and
conclusions.

II. INTEGRATE-AND-FIRE MODELS

We consider an all-to-all, homogeneously coupled net-
work that consists of N conductance-based excitatory IF
point neurons. Such neuronal networks have served as pro-
totypical theoretical models �1–4� by providing basic insight
into the fascinating dynamics of many neuronal networks in
the brain. Under a sinusoidal drive, this network’s dynamics
is governed by

V̇i = − GL�Vi − �L� − Gi�Vi − �E� + Iext,

Ġi = −
Gi

�
+ S�

j�i

N

�
k

��t − Tj,k� , �1�

where Vi and Gi are the membrane potential and excitatory
synaptic conductance of the ith neuron in the network, re-
spectively. GL is the leak conductance and �L is leakage volt-
age, while � is the decay time scale of the excitatory synap-
tic conductance and �E is the corresponding reversal
potential. The voltage Vi evolves continuously according to
Eq. �1� until it reaches the firing threshold VT, at which point
the ith neuron produces a spike �the kth spike of the ith
neuron is recorded as Ti,k�, and its voltage Vi is reset to the
reset voltage VR. Then, the ith neuron’s voltage Vi is held at
VR for an absolute refractory period of �ref ms. Each spike
from the ith neuron gives rise to an instantaneous increase in
the postsynaptic conductance of every other neuron with
magnitude S. The ith neuron in the system is driven by a
sinusoidal current Iext= I0+ I1 cos�2	
t+�i� �with the unit

A /cm2 physically� with the same angular frequency 2	

and the phase �i=2	i /N, 0� i�N−1.

III. LARGEST LYAPUNOV EXPONENT

In order to study the long-time stability of the IF network
dynamics �1�, we need to address the issue of how to gener-
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alize the usual LEs to a system that possesses nonsmooth/
jump dynamics as in the IF network. For a smooth dynamical
system: ẋ�t�=F�x�t� , t� with the initial condition: x�0�=x0,
the classical largest LE, which is used to characterize the
sensitivity of the dynamics to the perturbation of initial con-
ditions, is defined as

�max = lim
T→


lim
�→0

1

T
ln� �x̃�T� − x�T��

�
� �2�

with the initial perturbation: �x̃�0�−x�0��=�, where x̃�t� is a
nearby perturbed trajectory. �max corresponds to the growth
rate of the perturbation along the most unstable direction of
the dynamics. However, one cannot use Eq. �2� to numeri-
cally compute �max directly since there is a numerical ill-
conditioning related to the unboundedness in the log-ratio:
ln� �x̃�T�−x�T��

� � as T→
, arising from an exponential growth of
the perturbation for a chaotic trajectory �51�. Recall that such
difficulty can be circumvented by the following algorithm:
for k=1,2 , . . . ,M, we record x��k−1��T� as the reference
trajectory at the �k−1�th time step, x̃��k−1��T� as the per-
turbed trajectory at the same time step, the normalized
�-apart perturbed trajectory at the �k−1�th time step is ob-
tained as x̃���k−1��T�	x��k−1��T�+� x̃��k−1��T�−x��k−1��T�

�x̃��k−1��T�−x��k−1��T�� .
Then we use x��k−1��T� as an initial condition to evolve
one time step �T to obtain the reference trajectory at the next
time step as x�k�T�, meanwhile, we use x̃���k−1��T� as
another initial condition to evolve one time step �T to obtain
the perturbed trajectory at next time step as x̃�k�T�. The
local LE �k is computed as �k	 1

�T ln� �x̃�k�T�−x�k�T��
� �. Then,

the perturbed trajectory x̃�k�T� is normalized again to be
�-apart to obtain x̃��k�T� by x̃��k�T�	x�k�T�
+� x̃�k�T�−x�k�T�

�x̃�k�T�−x�k�T�� and we use x�k�T� and x̃��k�T� to evolve

for another �T to compute �k+1. Finally, the mean �̄
= 1

M �k=1
M �k will converge to �max as long as � is sufficiently

small and M is sufficiently large �49,51�.
However, we encounter two basic problems with this ap-

proach for a nonsmooth dynamical system such as an IF
network. One is whether the above definition of �max is still
valid, the other is whether the above algorithm still works.
We can show that the original definition of �max can be ex-
tended to the IF network dynamics. One of the underlying
reasons is that the spikes of x�t� and their corresponding
spikes of x̃�t� are order �-apart for any fixed finite T as long
as � is sufficiently small. For example, for the case of a
single neuron j, the dynamics is governed by

V̇j = − GL�Vj − �L� + I0 + I1 cos�2	
t� . �3�

�max can be derived �19,20� as

�max = − GL�1 − ��ref� + lim
T→


1

T�
k

ln
 V̇j�Tj,k + �ref�

V̇j�Tj,k
− �


 ,

�4�

where � is the firing rate of the neuron. The first term in Eq.
�4� corresponds to the subthreshold dynamics �t�� j, where
� j =�k�Tj,k+�ref ,Tj,k+1�� indicating the exponential decay of
the perturbation outside the refractory period as �V�Tj,k+1

− �

=�V��Tj,k+�ref�+�exp�−GL�Tj,k+1−Tj,k−�ref��. The second
term corresponds to the firing dynamics �t�� j

c where the
superscript c labels the complementary set� indicating the
variation of the perturbation across the refractory period as

�V��Tj,k+�ref�+�=�V�Tj,k
− �

V̇j�Tj,k+�ref�

V̇j�Tj,k
− �

. For the single neuron

case, the dimension of the system is low and therefore one
can follow the same procedure as in Refs. �19,20� to obtain
an explicit linear evolution of the perturbation. However, for
the network case, especially when the size of network be-
comes sufficiently large, it is impossible to obtain theoreti-
cally an explicit analytical expression of the linear evolution
of the perturbations because firings of neurons could lead to
many possible firing chains and the number of possible firing
events becomes combinatorially large. There are simply too
many chains of firing events to enumerate for a meaningful
theoretical treatment.

Next we point out that the original definition of LEs in
Eq. �2� can still be extended to the IF-like nonsmooth dy-
namical systems even though we cannot obtain the explicit
analytical expression for the linearized dynamics. For the
case of multiple neurons �Eq. �1��, the network dynamics can
also be divided into a network subthreshold period in which
no neuron is in the refractory, i.e., t�� j� j and a network
refractory period in which some of the neurons are in the
refractory, i.e., t�� j� j

c. For the network subthreshold pe-
riod, the trajectory of the perturbation �x
= ��V1 ,�G1 , . . . ,�VN ,�GN� follows the linearization of Eq.
�1�. For the network refractory period, the trajectory of the
perturbation for the ith neuron �xi= ��Vi ,�Gi� still follows
the linearization unless either �a� it fires, causing a disconti-
nuity in �Vi or �b� it receives other neuron’s spike, which
causes a discontinuity in �Gi. However, we can always ob-
tain a linear transition relation at the instant of both discon-
tinuities ignoring higher order terms. The transition relation
for �Vi at the discontinuity can be obtained as, to O���,
�Vi��Ti,k+�ref�+�=

V̇i��Ti,k+�ref�+�

V̇i�Ti,k
− �

�Vi�Ti,k
− �, which is similar to the

single neuron case. The transition relation for �Gi at the dis-
continuity �say, receiving a spike from the jth neuron� can be
obtained as, to O���, �Gi�Tj,k

+ �=�Gi�Tj,k
− �− S

�V̇j�Tj,k
− �

�Vj�Tj,k
− �.

Therefore, we can obtain a linear evolution �x�T� of an ini-
tial perturbation �x�0�, and the original definition of �max can
thus be naturally extended to the IF network dynamics.

However, we point out that the numerical algorithm we
mentioned above fails to capture the most unstable direction
in the IF dynamics for the perturbation, and therefore, cannot

ensure �̄→�max. For example, consider a single neuron un-
der Poisson drive, the dynamics is governed by

V̇ = − GL�V − �L� − G�V − �E� ,

Ġ = −
G

�
+ F�

l

��t − Tl
F� ,

where Tl
F is the lth input spike from the feedforward input.

Suppose the mth spike time for x�t� is t0=Tm and, at time
t1=k�T, x�t� is still in refractory, then the mth spike time for
x̃�t� should be Tm+O��� and x̃�t� will also be in refractory at
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time t1. Given the perturbation �x�t� at time immediately
before t0 as �x�t0

−�= ��V�t0
−� ,�G�t0

−��, we have the evolution
of the perturbation at time t1 as �x�t1�= �0,�G�t0

−�exp�
−

t1−t0

� �� and at time immediately after t2=Tm+�ref as

�x�t2
+� 	 ��V�t0

−�
V̇�t2

+�

V̇�t0
−�

,�G�t0
−�exp�−

t2 − t0

�
�� . �5�

This would approach the most unstable direction for the per-
turbation across the refractory period as m→
 or k→
.
However, the old algorithm requires a normalization at time
t1 in order to overcome the numerical ill-conditioning, there-
fore, the perturbation �x�t� at time t1 would be normalized as
�x��t1�=�0�0,�G�t0

−�exp�−
t1−t0

� ��, where �0 is the normalized
constant obtained as �0= �

��x�t1�� . And the perturbation �x�t� at
time immediately after t2 would be obtained as �x��t2

+�
= ��V�t0

−�
V̇�t2

+�

V̇�t0
−�

,�0�G�t0
−�exp�−

t2−t0

� ��. By comparing this with

Eq. �5�, it can be easily seen that this procedure cannot en-
sure the convergence to the most unstable direction as m
→
 or k→
. Hence, the failure of the old algorithm. This is
indeed the case as confirmed when we applied the old algo-
rithm to the single neuron dynamics. Therefore, we need a
new normalization procedure to avoid the numerical ill-
conditioning while still ensuring that the algorithm ap-
proaches the most unstable direction of the perturbation. This
can be achieved by modifying the normalization of the per-
turbation for the voltage of each individual neuron to ensure
that �x��t2

+� is parallel to �x�t2
+� by multiplying the normal-

ization constant �0 in the voltage component when the neu-
ron is just outside the refractory period.

To be specific, we illustrate our numerical algorithm for
the IF network as follows: For k=1,2 , . . . ,M, the initial con-
ditions of the reference trajectory and the perturbed trajec-
tory at time t= �k−1��T are given as x��k−1��T�
= �V1

�k−1� ,G1
�k−1� , . . . ,VN

�k−1� ,GN
�k−1�� and x̃��k−1��T�

= �Ṽ1
�k−1� , G̃1

�k−1� , . . . , ṼN
�k−1� , G̃N

�k−1��. Additionally, we define a
multiplier vector at each time t= �k−1��T as m��k−1��T�
= �m1,V

�k−1� ,m1,G
�k−1� , . . . ,mN,V

�k−1� ,mN,G
�k−1��, where �mj,V

�k−1� ,mj,G
�k−1�� cor-

responds to the jth neuron’s multiplier in its voltage �mj,V
�k−1��

and conductance �mj,G
�k−1��. It is defined as

mj,V
�k−1� = 1 if ��k − 1��T� � � j ,

mj,V
�k−1� = mj,V

�k−2��̄k−2 if ��k − 1��T� � � j
c,

mj,G
�k−1� 	 1. �6�

The corresponding �-apart perturbed trajectory x̃���k
−1��T�= �Ṽ1

�,�k−1� , G̃1
�,�k−1� , . . . , ṼN

�,�k−1� , G̃N
�,�k−1�� is obtained as

Ṽj
�,�k−1� = Vj

�k−1� + �̄k−2mj,V
�k−2��Ṽj

�k−1� − Vj
�k−1�� ,

G̃j
�,�k−1� = Gj

�k−1� + �̄k−2mj,G
�k−2��G̃j

�k−1� − Gj
�k−1�� ,

where the initial values of �mj,V
�k−2� ,mj,G

�k−2�� �when k=1� are
given as mj,V

�−1�=mj,G
�−1�=1. Here, �̄k−2 is the normalization con-

stant at time t= �k−1��T which is defined as

�̄k−2 =
�


�
j=1

N

��mj,V
�k−2��Ṽj

�k−1� − Vj
�k−1���2 + �mj,G

�k−2��G̃j
�k−1� − Gj

�k−1���2�

.

The normalization constant �̄k−2 in our algorithm differs
from that in the standard algorithm which would be the ratio
of � and the unmodified norm of the perturbation:

�k−2 =
�


�
j=1

N

��Ṽj
�k−1� − Vj

�k−1��2 + �G̃j
�k−1� − Gj

�k−1��2�

.

Note that the norm of the perturbation in the voltage compo-
nent is modified when both the reference and the perturbed
trajectories of the jth neuron are just coming out of the re-
fractory period �two trajectories are in the refractory period
at time t= �k−2��T and they are outside it at time t= �k
−1��T�, otherwise, it will reduce to the same case as in the
standard algorithm. For example, if both trajectories of the
jth neuron are inside the refractory period at t= �k−1��T,

then Ṽj
�k−1�−Vj

�k−1�	0, therefore, the term containing mj,V
�k−2�

has no effects on the normalization constant and we have
�̄k−2=�k−2. If both trajectories of the jth neuron are outside
the refractory period at both t= �k−2��T and t= �k−1��T,
then mj,V

�k−2� will be set to 1 according to Eq. �6� and we will
also have �̄k−2=�k−2. The multiplier for the conductance
term mj,G

�k−2� in our algorithm is always set to be 1 because the
conductance interaction is pulse-coupled without any delay
or resetting, however, our algorithm can also be extended to
deal with those cases with much more complicated conduc-
tance interactions.

We have applied our algorithm to system �3� and found
that the numerical result is indeed in perfect agreement with
the analytical expression in Eq. �4�. Incidentally, for the case
of a single neuron, there is another way to compute �max as
discussed by Muller �52�, i.e., a local �k across a refractory
period can be evaluated by waiting just �ref ms for both the
reference and the perturbed trajectories to come out of the
refractory. However, for a network, one cannot follow the
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same procedure because the refractory period of different
neurons may overlap with one another. Therefore the waiting
time for all neurons to be outside the refractory can be arbi-
trarily long, thus leading to the same numerical ill-
conditioning. We compared the numerical results of �max ob-
tained using different computational methods �our method,
standard method and Muller’s method� as shown in Fig. 1, as
we discussed above, our algorithm was designed to address
issues that the other two methods cannot successfully ad-
dress as clearly seen in Fig. 1, the standard method and
Muller’s method can produce incorrect estimates of �max in
some dynamical regimes. We will further discuss these dis-
crepancies below.

IV. NUMERICAL SIMULATION

We now turn to the question of whether conductance-
based pulse-coupled network interactions will give rise to
chaos in the IF network. In order to obtain accurate spiking
sequences, which is essential for understanding the network
mechanisms, we solve Eq. �1� by employing modified fourth
order Runge-Kutta methods, combined with spike-spike cor-
rections �53�. We have verified that �a� our numerical
schemes can achieve trajectory-wise accuracy �this enabling
us to investigate precisely the dynamics of neuronal network
�1�� and �b� our numerical results reported throughout are not
sensitive to the choice of initial conditions.

Figure 1 displays the numerical results of �max obtained
using different computational methods. It can be seen that
our method �indicated as the thick dark solid line� indeed
gives the correct result of �max in all dynamical regimes. The
standard method �indicated as the thin dark gray dash line�
gives the overestimates of �max in both chaotic and quasip-
eriodic regimes. The Muller method �indicated as the thick
light gray solid line �cyan online�� gives the incorrect result
for the largest LE ��max�0� in the periodic regime in which
the neurons are phase-locked to the external drive ��ISI
	25 ms� as shown in Fig. 2�B�, therefore, �max should be
negative. The Muller method fails in this regime because the

refractory periods of different neurons become overlapped as
discussed before. This overlapping makes the waiting time
for all neurons to exit the refractory period sufficiently long
that numerical overflow is unavoidable, thus yielding an in-
correctly calculated �max.

Figure 2�A� displays the value of �max as a function of the
coupling strength S, and Fig. 2�B� shows the last 80 inter-
spike intervals �ISI� for the 0th neuron. Figure 2 demon-
strates that there are essentially three dynamical regimes,
corresponding to weak, intermediate, and strong coupling
strengths. When S is weak �0�S�0.0045�, �max is negative.
The responses are almost phase locked to the stimulus and
there is a stable periodic pattern of spikes �55–59�. When S is
moderately strong �0.0045�S�0.014�, �max jumps back and
forth between zero and positive, signifying that the dynamics
of the system is either quasiperiodic or chaotic. When S is
very strong �0.014�S�0.02�, �max stays near zero and the
ISI is distributed densely in some interval. As S grows larger,
the size of the interval becomes shorter, indicating that the
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FIG. 1. �Color online� �max obtained using different computa-
tional methods vs network coupling strength S. The thick dark solid
line corresponds to the result generated by our algorithm, the thin
dark gray dash line corresponds to the result generated by the stan-
dard algorithm and the thick light gray solid line �cyan online�
corresponds to the result generated by Muller’s method.
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FIG. 2. �Color online� �a� �max vs network coupling strength S
�b� last 80 ISI is plotted for each value of S. Inset: average firing
frequency vs S. In a reduced-dimensional units �with G being in the
unit of �ms−1��, parameters are chosen as GL=0.05 ms−1, �L=0,
�E=14 /3, VT=1, VR=0, �=2 ms, �ref=2 ms, I0=0.05 ms−1, I1
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=0.04 ms−1 �53,54�, which correspond to typical
physiological values: GL=50�10−6 �−1 cm−2, �L=−70 mV, �E

=0 mV, VT=−55 mV.
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neurons in the system are more synchronized. To demon-
strate the reliability of numerical estimation of �max, we have
also verified the convergence of �max in the classical sense
over time steps as shown in Fig. 3. Here, we use �max com-
puted with a small time step �t=1 /1024 ms �dark: black
online� as the benchmark of the exact largest LE. Figure 3
shows that the solution of �max generated using larger time
steps with �t=1 /16 ms �dark gray: red online� and �t
=1 /128 ms �light gray: cyan online� will eventually ap-
proach this benchmark as the time step is chosen smaller and
smaller. The inset in Fig. 2�B� plots the average firing fre-
quency �KISI� vs coupling strength S. The nth firing time of
the 0th neuron is recorded as Tn and the corresponding nth
ISI is defined as: �ISI�n�=Tn+1−Tn. Then, the average firing
frequency �KISI� can be obtained by �KISI�= 1

��ISI�
, where

��ISI� is the average period defined as ��ISI�
= lim

N→


1
N�n=1

N �ISI�n�. It can be seen that there is an appearance

of a devil’s staircase structure in the region where S is weak.
However, the devil’s staircase structure breaks up in the cha-
otic regime of intermediate coupling strength.

Next, we pick up a representative case from each of three
dynamical regimes and discuss their detailed dynamical
structure, with Figs. 4�a1�–4�a3� �max�−0.035896 �S
=0.001�, Figs. 4�b1�–4�b3� �max�0.020453 �S=0.0105� and
Figs. 4�c1�–4�c3� �max�0 �S=0.0165�. Figures 4�a1�–4�c1�
displays the return map of the firing phase T̂n for the 0th
neuron �we have removed the transient effects to construct

the map�. T̂n is defined as T̂n=
Tn mod 1, where 
 is the

external driving frequency. The return map of T̂n can be
viewed as a circle projection of the full dynamics �49,51�.
Figure 4�a1� shows that there is only one dot �a fixed point
near the origin�, indicating that the neuron fires periodically.
Figure 4�b1� shows a complicated geometric structure with
data points spreading over it due to the fractal dimension of
the attractor, which is indicative of the chaotic dynamics.
Figure 4�c1� shows a monotone curve, consistent with qua-
siperiodic dynamics. This monotone curve will eventually
become a straight line as S becomes sufficiently strong, at
which point there is a perfect synchrony of the neurons in the
system. We note in passing that the return map of V�tn�, tn

	n /
 exhibits similar characteristics, consistent with peri-
odic, chaotic, and quasiperiodic dynamics as S increases.

We have also taken other measures to corroborate these
three cases. Figures 4�a2�–4�c2� displays the power spectra,
averaged over all neurons, of membrane potential traces in
the network in three cases. There is clearly a common peak
in the power spectrum of all three cases at the location of
log10�k�=log10�1000
�=1.6021 Hz in abscissa and it corre-
sponds to the frequency induced by the external stimulus Iext.
In spite of this peak in the power spectra, we can see that the
structure of the power spectra for each case is consistent with
its dynamical characterization �49,51�. For periodic case and
quasiperiodic case, we can see sharp peaks in the power
spectra as shown in Figs. 4�a2� and 4�c2�, whereas, for the
chaotic dynamics, there is a broadband structure in the power
spectrum as shown in Fig. 4�b2�. To investigate the implica-
tion of chaotic dynamics, we also studied the numerical con-
vergence of the modified fourth order Runge-Kutta method.
Figure 4�a3�–4�c3� displays the result of convergence stud-
ies. We approximate the exact solution of the system by us-
ing a small time step ��t=1 /1024 ms�0.000 98 ms� and
compare this solution with other trajectories obtained using
larger time steps �from �t=1 ms to �t=1 /512 ms�. We

measure both the relative average error in the voltage ĒV and

the relative error in the average voltage EV̄, which are de-
fined as

ĒV = � 1

tF − t0
�

t0

tF

�Vexact�t� − V�t�t��dt�� V̄ ,

EV̄ = 
 1

tF − t0
�

t0

tF

�Vexact�t� − V�t�t��dt
� V̄ ,

where

V̄ = 
 1

tF − t0
�

t0

tF

Vexact�t�dt
 .

As shown in Figs. 4�a3�–4�c3�, the error ĒV is represented by
the marker of triangle �linked by thin dark gray dash line

�black online��, and the error EV̄ is represented by the marker
of square �linked by thick light gray solid line �cyan online��.
The thick dark straight line corresponds to a scaling with
exponent 4 between the error and the time step. In the peri-
odic and quasiperiodic dynamical regimes, i.e., the weak or
strong coupling limits, we can achieve a good numerical
convergence of the solution in the trajectory-wise sense by
using our numerical methods. Therefore, in these regimes the
solutions are reliable. For the chaotic dynamical regime with
an intermediate strong coupling, there is no numerical con-
vergence of the solution in the classical, trajectory-wise
sense. However, the statistical quantifications of some dy-
namical properties, such as �max and firing rate are still reli-
able.

V. DISCUSSION AND CONCLUSION

In summary, we have shown numerically that an all-to-all
homogeneously coupled network of excitatory linear IF neu-
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FIG. 3. �Color online� Convergence of numerical computation
of �max vs network coupling strength S over different time steps
�t=1 /16 ms �dark gray: red online�, 1/128 ms �light gray: cyan
online�, 1/1024 ms �dark: black online�.
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rons can indeed possess chaos, despite the fact that a stan-
dard single IF neuron cannot have chaotic behavior. More-
over, the chaotic dynamics indicated by �max�0 is
corroborated by other measures, such as power spectra, re-
turn maps, and numerical convergence tests. We have also
provided an algorithm to compute the largest LE for a class
of nonsmooth dynamical systems with degeneracy �such as
induced by the refractoriness�. We emphasize that our algo-
rithm can deal with much broader cases than those we have
discussed in this paper. For example, the algorithm can easily
be extended to the case of conductance drive with a stochas-

tic nature, such as feedforward Poisson spikes, which are
more realistic as an approximation to cortical spike trains.
Also, the algorithm is independent of the network connec-
tions and can be used to study more complicated cortical
structure, such as inhomogeneity and sparsity.
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FIG. 4. �Color online� �a1�–�c1� Return map of the firing phase in periodic �a1�, chaotic �b1�, and quasiperiodic �c1� state; �a2�–�c2�
power spectra, averaged over all neurons, of membrane potential traces in the network in periodic �a2�, chaotic �b2�, and quasiperiodic �c2�
state; �a3�–�c3� convergence of the modified fourth order Runge-Kutta method in periodic �a3�, chaotic �b3�, and quasiperiodic �c3� state.
The triangle �linked by thin dark gray dash line: black online� corresponds to the relative average error in the voltage, the square �linked by
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